17q12缺失综合征(近四成的家族性糖尿病可以明确相关基因诊断)

转自《国际糖尿病》研究人员:

网上赚钱的软件17q

梁华,张亚男,李麦心悦,严晋华,杨黛稚,骆斯慧,郑雪瑛,杨国庆,李卓,许雯,Leif Groop,翁建平

青少年发病的成人型糖尿病(MODY)是一种单基因疾病,具有常染色体显性遗传、早发病(<25岁)和非胰岛素依赖等特点,占糖尿病患者的1%~4%,至少13个不同基因(HNF4A、GCK、HNF1A、PDX1、HNF1B、NEUROD1、KLF11、CEL、PAX4、INS、BLK、ABCC8和KCNJ11)已被证明可导致MODY亚型1-13的发生。先前的研究表明,GCK基因(MODY2)、HNF1A(MODY3)和HNF4A(MODY1)基因的突变是西方人群中最常见的MODY病因,占所有MODY病例的80%~90%,但这些基因的突变仅能解释10%~20%亚洲(包括中国、日本和韩国)MODY的发病,亚洲MODY患者的主要遗传原因至今尚未查明。因此需要对MODY患病情况和突变谱进行研究。

由翁建平教授带领的研究团队,8月2日在线发表于J Diabetes Investig杂志的题为Recognition of Maturity-Onset Diabetes of the Young (MODY) in China的研究结果可谓代表我国特殊类型糖尿病最好的研究。现将讲究结果简述如下:

研究过程

患者和方法:

研究人员从35家医院招募了参加中华医学会糖尿病学分会(CDS)于2013~2016年发起的“单基因糖尿病国家登记项目”的76个无血缘关系的家庭,其中包括74个汉族家系,藏族和满族各1个。这些家庭均符合公认的MODY临床诊断标准:糖尿病家族史阳性,至少连续2代受影响;早发型高血糖症(至少1名家庭成员诊断年龄在25岁以下);非胰岛素依赖性(不需要胰岛素治疗或即使在胰岛素治疗3年后血清C肽水平仍>0.60 ng/ml)。研究人员对这76个符合MODY临床诊断标准的无血缘关系家庭的先证者进行MODY候选基因或外显子靶向捕获测序,在GnomAD或ExAC数据库中,将MAF<0.01用于筛选显著变异,进行Sanger测序以验证发现,并通过SIFT、PolyPhen-2和PROVEAN或CADD对错义突变进行功能预测。

结果:

这76个家系,在31个家系中共检测到6个基因的32个突变,占MODY病例的40.79%。这些突变有之前报道过的,也有新发现的突变(包含了7个无义/移码突变和4个错义突变),均为可能致病性的突变,包括15个GCK突变(MODY2)、12个HNF1A突变(MODY3)、2个HNF4A突变(MODY1)、1个KLF11突变(MODY7)、1个PAX4突变(MODY9)和1个NEUROG3突变。除两个de novo突变(HNF4A-MODY1P.Cys808Ser和HNF1A-MODY3 p.Lys120Glu)外,所有突变均为遗传性改变。总的来说,MODY2突变家系占18.42%,HNF1A占15.79%,HNF4A占2.63%,PAX4、KLF11和NEUROG3各占1.32%。MODY2、MODY3/1和MODYX的临床特点与以往报道相似,NEUROG3 p.Arg55Glufs*23所致MODY的临床表型以高血糖和轻度间歇性腹痛为特征。

结论

本研究更新了MODY流行病学的新认识,即用已知致病基因解释MODY的比例高于先前报道,并发现NEUROG3可能是MODY的一个新的致病基因。具体讨论如下:

本研究的局限性如下:

(1)由于一些基因具有高度重复的复杂区域或假基因,故高通量测试无法达到100%的覆盖率,但总体覆盖率可以达到95%以上;

(2) MODY5是一种低外显率疾病,最常见的突变是全部或部分外显子的单等位基因缺陷。然而,我们的研究中使用的NGS不能检测到大基因组片段中的拷贝数变异(CNV)。多重连接依赖探针扩增(MLPA)是CNV检测的金标准,在MODY541的遗传诊断中被认为比比较基因组杂交阵列(aCGH)更有优势。因此,在没有MLPA分析的情况下估计MODY5患病率是我们研究的一个局限性。MODY5最常见的突变是17q12缺失,由于17 q12缺失引起的MODY5中70%是偶发的,本研究中使用的MODY筛查标准(如是否存在家族史)也可能影响MODY5患病率的评估。

最后,在我们的研究中,仍有60%的MODY患者没有确定的遗传原因,中国人群MODY的主要基因尚待鉴定。因此,需要对中国MODY患者进行更广泛的遗传学研究。

参考文献

(上下滑动可查看)

  1. Gardner DS, Tai ES. Clinical features and treatment of maturity onset diabetes of the young (MODY). Diabetes Metab Syndr Obes 2012;5:101-8.
  2. Timsit J, Saint-Martin C, Dubois-Laforgue D, et al. Searching for Maturity-Onset Diabetes of the Young (MODY): When and What for. Can J Diabetes 2016;40:455-461.
  3. Bonnefond A, Philippe J, Durand E, et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One 2012;7:e37423.
  4. Gao R, Liu Y, Gjesing AP, et al. Evaluation of a target region capture sequencing platform using monogenic diabetes as a study-model. BMC Genet 2014;15:13.
  5. Prudente S, Jungtrakoon P, Marucci A, et al. Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus. Am J Hum Genet 2015;97:177-85.
  6. Kleinberger JW, Pollin TI. Undiagnosed MODY: Time for Action. Curr Diab Rep 2015; 15:110.
  7. Shields BM, Hicks S, Shepherd MH, et al. Maturity-onset diabetes of the young (MODY): how many cases are we missing. Diabetologia 2010;53:2504-8.
  8. Shim YJ, Kim JE, Hwang SK, et al. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing. Horm Res Paediatr 2015;83:242-51.
  9. Ellard S, Bellanné-Chantelot C, Hattersley AT. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008;51:546-53.
  10. Pollard KS, Hubisz MJ, Siepel A, et al. Detection of non-neutral substitution rates on mammalian phylogenies. Genome Res. 2010Jan;20(1):110-21
  11. RichardsS,AzizN,BaleS,etal.Standardsandguidelinesfortheinterpretationofsequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17:405-24.
  12. Chen J, Huang B, Wang D, et al. The observation of glucose, insulin and C peptide of steam bread test among healthy population. Chin Med J (Engl)1982;62(11):643-7.
  13. Stride A, Vaxillaire M, Tuomi T, et al. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia 2002;45:427-35.
  14. Xu JY, Dan QH, Chan V, et al. Genetic and clinical characteristics of maturity-onset diabetes of the young in Chinese patients. Eur J Hum Genet 2005;13:422-7. 15. 15.
  15. Liu L, Liu Y, Ge X, et al. Insights into pathogenesis of five novel GCK mutations identified in Chinese MODY patients. Metabolism 2018;89:8-17.
  16. Fang QC, Zhang R, Wang CR, et al. [Scanning HNF-1 alpha gene mutation in Chinese early-onset and/or multiplex diabetes pedigrees]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2004; 21:329-34.
  17. Beer NL, van de Bunt M, Colclough K, et al. Discovery of a novel site regulating glucokinase activity following characterization of a new mutation causing hyperinsulinemic hypoglycemia in humans. J Biol Chem 2011;286:19118-26.
  18. Wang Z, Diao C, Liu Y, et al. Identification and functional analysis of GCK gene mutations in 12 Chinese families with hyperglycemia. J Diabetes Investig 2019; 10:963-971.
  19. Osbak KK, Colclough K, Saint-Martin C, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2009;30:1512-26.
  20. Kamata K, Mitsuya M, Nishimura T, et al. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 2004;12:429-38.
  21. Raimondo A, Chakera AJ, Thomsen SK, et al. Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. Hum Mol Genet 2014;23:6432-40.
  22. Yorifuji T, Higuchi S, Kawakita R, et al. Genetic basis of early-onset, maturity-onset diabetes of the young-like diabetes in Japan and features of patients without mutations in the major MODY genes: Dominance of maternal inheritance. Pediatr Diabetes 2018; 19:1164-1172.
  23. Sagen JV, Bj?rkhaug L, Molnes J, et al. Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry. Pediatr Diabetes 2008;9:442-9.
  24. 【24】Capuano M, Garcia-Herrero CM, Tinto N, et al. Glucokinase (GCK) mutations and their characterization in MODY2 children of southern Italy. PLoS One. 2012. 7(6):e38906.
  25. Yamagata K. Regulation of pancreatic beta-cell function by the HNF transcription network: lessons from maturity-onset diabetes of the young (MODY). Endocr J 2003;50:491-9.
  26. Yamagata K, Yang Q, Yamamoto K, et al. Mutation P291fsinsC in the transcription factor hepatocyte nuclear factor-1alpha is dominant negative. Diabetes 1998;47:1231-5.
  27. 【27】Gu N, Suzuki N, Takeda J, et al. Effect of mutations in HNF-1alpha and HNF-1beta on the transcriptional regulation of human sucrase-isomaltase in Caco-2 cells. BiochemBiophys Res Commun 2004;325:308-13.
  28. Malikova J, Kaci A, Dusatkova P, et al. Functional Analyses of HNF1A-MODY Variants Refine the Interpretation of Identified Sequence Variants. J Clin Endocrinol Metab 2020; 105.
  29. Fang C, Huang J, Huang Y, et al. A novel nonsense mutation of the HNF1α in maturity-onset diabetes of the young type 3 in Asian population. Diabetes Res Clin Pract 2015; 109:e5-7.
  30. Costa A, Bescós M, Velho G, et al. Genetic and clinical characterisation of maturity-onset diabetes of the young in Spanish families. Eur J Endocrinol 2000;142:380-6.
  31. Siddiqui K, Musambil M, Nazir N. Maturity onset diabetes of the young (MODY)--history, first case reports and recent advances. Gene 2015;555:66-71.
  32. Li X, Ting TH, Sheng H, et al. Genetic and clinical characteristics of Chinese children with Glucokinase-maturity-onset diabetes of the young (GCK-MODY). BMC Pediatr 2018; 18:101
  33. Raile K, Schober E, Konrad K, et al. Treatment of young patients with HNF1A mutations (HNF1A-MODY). Diabet Med 2015;32:526-30.
  34. Pearson ER, Starkey BJ, Powell RJ, et al. Genetic cause of hyperglycemia and response to treatment in diabetes. Lancet 2003;362:1275-81.
  35. Hattersley AT, Pearson ER. Minireview: pharmacogenetics and beyond: the interaction of therapeutic response, beta-cell physiology, and genetics in diabetes. Endocrinology 2006; 147:2657-63.
  36. Agata Juszczak KO. Identifying subtypes of monogenic diabetes. Diabetes Manage 2014; 4:46-61.
  37. Wang J, Cortina G, Wu SV, et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med 2006;355:270-80.
  38. Rubio-Cabezas O, Jensen JN, Hodgson MI, et al. Permanent Neonatal Diabetes and Enteric Anendocrinosis Associated With Biallelic Mutations in NEUROG3. Diabetes 2011; 60:1349-53.
  39. Horikawa Y. Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus. J Diabetes Investig 2018;9:704-712.
  40. Stuppia L, Antonucci I, Palka G, et al. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci 2012; 13:3245-76.
  41. Omura Y, Yagi K, Honoki H, et al. Clinical manifestations of a sporadic maturity-onset diabetes of the young (MODY) 5 with a whole deletion of HNF1B based on 17q12 microdeletion. Endocr J 2019;66:1113-1116.
  42. 【42】Murray PJ, Thomas K, Mulgrew CJ, et al. Whole gene deletion of the hepatocyte nuclear factor-1beta gene in a patient with the prune-belly syndrome. Nephrol Dial Transplant 2008; 23:2412-5.
  43. Sagen JV, Odili S, Bj?rkhaug L, et al. From clinicogenetic studies of maturity-onset diabetes of the young to unraveling complex mechanisms of glucokinase regulation. Diabetes 2006;55:1713-22.
  44. Stoffel M, Froguel P, Takeda J, et al. Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc Natl Acad Sci U S A 1992;89:7698-702.
  45. McKinney JL, Cao H, Robinson JF, et al. Spectrum of HNF1A and GCK mutations in Canadian families with maturity-onset diabetes of the young (MODY). Clin Invest Med 2004; 27:135-41.
  46. Lambert AP, Ellard S, Allen LI, et al. Identifying hepatic nuclear factor 1alpha mutations in children and young adults with a clinical diagnosis of type 1 diabetes. Diabetes Care 2003; 26:333-7.
  47. Chèvre JC, Hani EH, Boutin P, et al. Mutation screening in 18 Caucasian families suggest the existence of other MODY genes. Diabetologia 1998;41:1017-23.
  48. Alkorta-Aranburu G, Carmody D, Cheng YW, et al. Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab 2014;113:315-320.
  49. Vaxillaire M, Rouard M, Yamagata K, et al. Identification of nine novel mutations in the hepatocyte nuclearfactor 1 alpha gene associated with maturity-onset diabetes of the young (MODY3). Hum Mol Genet 1997;6:583-6.
  50. Ng MC, Cockburn BN, Lindner TH, et al. Molecular genetics of diabetes mellitus in Chinese subjects: identification of mutations in glucokinase and hepatocyte nuclear factor-1alpha genes in patients with early-onset type 2 diabetes mellitus/MODY. Diabet Med 1999;16:956-63.

研究团队介绍

遗传因素和环境因素是糖尿病发生和发展的内因和外因,研究糖尿病(特别是其中的特殊类型糖尿病)的分子病因对于拓展我们对糖尿病发病分子缺陷机制的认识显得十分重要,而分子诊断又是指导遗传性疾病个体化治疗的前提和基础。翁建平教授及其团队自2001年开始建立糖尿病家系库,并开展特殊类型糖尿病的分子诊断技术,将基因诊断、分子遗传机制以及临床应用三方面相结合,指导临床个体化诊治。该研究团队开展了我国第一个胰岛素受体变异型糖尿病的研究,发现胰岛素受体B亚单位R1174W变异可导致糖尿病和低血糖;国内外首次报道葡萄糖激酶基因(GCK)E339K变异引起的青少年起病的成年型糖尿病(MODY)2型,并明确了此突变通过降低GCK 蛋白产量、酶催化活性、热稳定性和改变蛋白晶体构象,造成胰岛素分泌减少,进而发生糖尿病。这些研究结果回馈临床,直接指导临床治疗及预测疾病预后。2013年,翁建平教授牵头中华医学会糖尿病学分会发起的'单基因糖尿病全国登记项目',对包括MODY、新生儿糖尿病、线粒体基因糖尿病、严重胰岛素抵抗综合征等疾病在内的130余家系进行了基因筛查,为这些单基因糖尿病提供了全国性数据资料,为后续科学研究奠定了基础。

您可以还会对下面的文章感兴趣

使用微信扫描二维码后

点击右上角发送给好友