拟合函数怎么求(神经网络实验:万能函数拟合器)

概述

都说神经网络是一个万能的函数拟合器,如何理解这句话呢?让我们做一些实验,去获取更直观的理解。

为了直观与方便理解,我们用神经网络去拟合一元函数,也就是

实验1. 函数

训练样本

如图所示:

拟合函数

  • 蓝色点代表训练样本,它们都是从函数中取样获得
  • 橙色的直线代表神经网络所表示的函数,目前未训练,与样本偏离较大

思路

拟合一条直线,我们需要使用什么结构的神经网络去拟合它呢?为了理解透彻,我们需要理解单个神经元。

单个神经元的形式为:

  • 为待确定的参数
  • 为激活函数

如果去掉,其形式就是,刚好就是一条直线。也就是说,我们使用一个不带激活函数的神经元,就可以拟合该函数。

实验

如上图所示,使用单个输出神经元,经过20步的训练,神经网络就与目标函数拟合地很好了。所得到的参数如下图所示:

对应的函数为,与目标函数极为接近,再多训练几步即可更为接近。

2. 函数y=|x|

训练样本

该函数是一个分段函数

思路

由于这里不是直线,这就需要用到非线性激活函数了,它可以将直线弯折。由于不涉及曲线,ReLU是比较合适的激活函数:


观察ReLU函数的曲线,一边是水平直线,另一个是一条斜线。如果能够获得2条ReLU曲线,让他们反向叠加,是不是就可以得到目标曲线了?

最终结果如下:


其中2个隐藏神经元为:

输出神经元为:,刚好得到目标曲线。

(以上结果未经参数训练,直接通过手工设置参数获得)

3. 函数

所需隐藏神经元上升到4个。

4. 函数

网络更加复杂,拟合的曲线也不再完美。

总结

随着目标函数变得更加复杂:

  • 对应的神经网络也更加复杂
  • 所需的训练数据量也更多
  • 训练难度越来越大
  • 越来越不直观,越来越难以解释

反过来说,更复杂神经网络、更多的数据量,可以用来拟合更复杂的函数。理论上可以拟合任意函数,当然,网络要无限大,数据量也要无限多。

参考软件

神经网络与深度学习

可从App Store, Mac App Store, Google Play下载。

您可以还会对下面的文章感兴趣

最新评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

使用微信扫描二维码后

点击右上角发送给好友