labelmatrix32中文版(Pydantic—强大的数据校验工具,比DRF的校验器还快12倍)

Pydantic 是一个使用Python类型注解进行数据验证和管理的模块。安装方法非常简单,打开终端输入:

pip install pydantic

它类似于 Django DRF 序列化器的数据校验功能,不同的是,Django里的序列化器的Field是有限制的,如果你想要使用自己的Field还需要继承并重写它的基类:

# Django 序列化器的一个使用例子,你可以和下面Pydantic的使用作对比
class Book(models.Model):
id = models.AutoField(primary_key=True)
name = models.CharField(max_length=32)
price = models.DecimalField(max_digits=5, decimal_places=2)
author = models.CharField(max_length=32)
publish = models.CharField(max_length=32)

而 Pydantic 基于Python3.7以上的类型注解特性,实现了可以对任何类做数据校验的功能:

上滑查看更多代码

# Pydantic 数据校验功能
from datetime import datetime
from typing import List, Optional
from pydantic import BaseModel


class User(BaseModel):
id: int
name = 'John Doe'
signup_ts: Optional[datetime] = None
friends: List[int] =


external_data = {
'id': '123',
'signup_ts': '2019-06-01 12:22',
'friends': [1, 2, '3'],
}
user = User(**external_data)
print(user.id)
print(type(user.id))
#> 123
#> <class 'int'>
print(repr(user.signup_ts))
#> datetime.datetime(2019, 6, 1, 12, 22)
print(user.friends)
#> [1, 2, 3]
print(user.dict)
"""
{
'id': 123,
'signup_ts': datetime.datetime(2019, 6, 1, 12, 22),
'friends': [1, 2, 3],
'name': 'John Doe',
}
"""

从上面的基本使用可以看到,它甚至能自动帮你做数据类型的转换,比如代码中的 user.id, 在字典中是字符串,但经过Pydantic校验器后,它自动变成了int型,因为User类里的注解就是int型。

当我们的数据和定义的注解类型不一致时会报这样的Error:

from datetime import datetime
from typing import List, Optional
from pydantic import BaseModel


class User(BaseModel):
id: int
name = 'John Doe'
signup_ts: Optional[datetime] = None
friends: List[int] =


external_data = {
'id': '123',
'signup_ts': '2019-06-01 12:222',
'friends': [1, 2, '3'],
}
user = User(**external_data)
"""
Traceback (most recent call last):
File "1.py", line 18, in <module>
user = User(**external_data)
File "pydanticmain.py", line 331, in pydantic.main.BaseModel.__init__
pydantic.error_wrappers.ValidationError: 1 validation error for User
signup_ts
invalid datetime format (type=value_error.datetime)
"""

即 "invalid datetime format", 因为我传入的 signup_ts 不是标准的时间格式(多了个2)。

1. Pydantic模型数据导出

通过Pydantic模型中自带的 json 属性方法,能让经过校验后的数据一行命令直接转成 json 字符串,如前文中的 user 对象:

print(user.dict) # 转为字典
"""
{
'id': 123,
'signup_ts': datetime.datetime(2019, 6, 1, 12, 22),
'friends': [1, 2, 3],
'name': 'John Doe',
}
"""
print(user.json) # 转为json
"""
{"id": 123, "signup_ts": "2019-06-01T12:22:00", "friends": [1, 2, 3], "name": "John Doe"}
"""

非常方便。它还支持将整个数据结构导出为 schema json,它能完整地描述整个对象的数据结构类型:

上滑查看更多代码

print(user.schema_json(indent=2))
"""
{
"title": "User",
"type": "object",
"properties": {
"id": {
"title": "Id",
"type": "integer"
},
"signup_ts": {
"title": "Signup Ts",
"type": "string",
"format": "date-time"
},
"friends": {
"title": "Friends",
"default": ,
"type": "array",
"items": {
"type": "integer"
}
},
"name": {
"title": "Name",
"default": "John Doe",
"type": "string"
}
},
"required": [
"id"
]
}
"""

2.数据导入

除了直接定义数据校验模型,它还能通过ORM、字符串、文件导入到数据校验模型:

比如字符串(raw):

from datetime import datetime
from pydantic import BaseModel


class User(BaseModel):
id: int
name = 'John Doe'
signup_ts: datetime = None

m = User.parse_raw('{"id": 123, "name": "James"}')
print(m)
#> id=123 signup_ts=None name='James'

此外,它能直接将ORM的对象输入,转为Pydantic的对象,比如从Sqlalchemy ORM:

上滑查看更多代码

from typing import List
from sqlalchemy import Column, Integer, String
from sqlalchemy.dialects.postgresql import ARRAY
from sqlalchemy.ext.declarative import declarative_base
from pydantic import BaseModel, constr

Base = declarative_base


class CompanyOrm(Base):
__tablename__ = 'companies'
id = Column(Integer, primary_key=True, able=False)
public_key = Column(String(20), index=True, able=False, unique=True)
name = Column(String(63), unique=True)
domains = Column(ARRAY(String(255)))


class CompanyModel(BaseModel):
id: int
public_key: constr(max_length=20)
name: constr(max_length=63)
domains: List[constr(max_length=255)]

class Config:
orm_mode = True


co_orm = CompanyOrm(
id=123,
public_key='foobar',
name='Testing',
domains=['example.com', 'foobar.com'],
)
print(co_orm)
#> <models_orm_mode.CompanyOrm object at 0x7f0bdac44850>
co_model = CompanyModel.from_orm(co_orm)
print(co_model)
#> id=123 public_key='foobar' name='Testing' domains=['example.com',
#> 'foobar.com']

从Json文件导入:

from datetime import datetime
from pathlib import Path
from pydantic import BaseModel


class User(BaseModel):
id: int
name = 'John Doe'
signup_ts: datetime = None

path = Path('data.json')
path.write_text('{"id": 123, "name": "James"}')
m = User.parse_file(path)
print(m)

从pickle导入:

import pickle
from datetime import datetime
from pydantic import BaseModel

pickle_data = pickle.dumps({
'id': 123,
'name': 'James',
'signup_ts': datetime(2017, 7, 14)
})
m = User.parse_raw(
pickle_data, content_type='application/pickle', allow_pickle=True
)
print(m)
#> id=123 signup_ts=datetime.datetime(2017, 7, 14, 0, 0) name='James'

3.自定义数据校验

你还能给它增加 validator 装饰器,增加你需要的校验逻辑:

上滑查看更多代码

from sklearn.metrics import confusion_matrix
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# 1.导入数据集
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [1, 2, 3]].values
Y = dataset.iloc[:, 4].values

# 性别转化为数字
labelencoder_X = LabelEncoder
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])

# 2.将数据集分成训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.25, random_state=0)

# 3.特征缩放
sc = StandardScaler
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# 4.训练
classifier = LogisticRegression
classifier.fit(X_train, y_train)

# 5.预测
y_pred = classifier.predict(X_test)

# 6.评估预测

# 生成混淆矩阵
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)

上面,我们增加了三种自定义校验逻辑:

1.name 必须带有空格

2.password2 必须和 password1 相同

3.username 必须为字母

让我们试试这三个校验是否有效:

user = UserModel(
name='samuel colvin',
username='scolvin',
password1='zxcvbn',
password2='zxcvbn',
)
print(user)
#> name='Samuel Colvin' username='scolvin' password1='zxcvbn' password2='zxcvbn'

try:
UserModel(
name='samuel',
username='scolvin',
password1='zxcvbn',
password2='zxcvbn2',
)
except ValidationError as e:
print(e)
"""
2 validation errors for UserModel
name
must contain a space (type=value_error)
password2
passwords do not match (type=value_error)
"""

可以看到,第一个UserModel里的数据完全没有问题,通过校验。

labelmatrix

第二个UserModel里的数据,由于name存在空格,password2和password1不一致,无法通过校验。因此我们定义的自定义校验器完全有效。

4.性能表现

这是最令我惊讶的部分,Pydantic 比 Django-rest-framework 的校验器还快了12.3倍:

Package版本相对表现平均耗时
pydantic1.7.393.7μs
attrs + cattrs20.31.5x slower143.6μs
valideer0.4.21.9x slower175.9μs
marshmallow3.102.4x slower227.6μs
voluptuous0.122.7x slower257.5μs
trafaret2.1.03.2x slower296.7μs
schematics2.1.010.2x slower955.5μs
django-rest-framework3.1212.3x slower1148.4μs
cerberus1.3.225.9x slower2427.6μs

而且他们的所有基准测试代码都是开源的,你可以在下面这个Github链接找到:

https://github.com/samuelcolvin/pydantic/tree/master/benchmarks

您可以还会对下面的文章感兴趣

最新评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

使用微信扫描二维码后

点击右上角发送给好友